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Synopsis
Most MR images contain artifacts such as wrap-around and Gibbs ringing, which negatively a�ect the diagnostic quality and, in some cases, may be confused with
pathology. This work presents ArtifactID, a deep learning based tool to help MR technicians to identify and classify artifacts in datasets acquired with low-�eld systems. We
trained binary classi�cation models to accuracies greater than 88% to identify wrap-around and Gibbs ringing artifacts in T  brain images. ArtifactID can help novice MR
technicians in low resource settings to identify and mitigate these artifacts.

Introduction
Most MR images contain artifacts [1, 2] such as wrap-around, Gibbs ringing, etc. These artifacts negatively a�ect the diagnostic quality and, in some cases, may be
confused with pathology [1]. Identifying artifacts requires expertise, and eliminating them demands prior knowledge of their source and underlying phenomena [3].
Developing countries witness scarcity of skilled MR technicians and radiologists [4, 5]. This scarcity results in avoidable scan repetitions, increased operating time and
costs [6, 7], and occasionally misdiagnosis and misinterpretation. In this work, we demonstrate ArtifactID as a �rst step in the solution to this challenge of identifying
artifacts in brain MRI. ArtifactID can identify wrap-around and Gibbs ringing artifacts occurring in data acquired from 0.36T �eld strengths.

Methods
We synthesized wrap-around utilizing the publicly available IXI dataset [8] (T  contrast only). Patches containing the edges of the volume across all three axes were
extracted from each input slice and overlaid onto the central region. The simulation code chose the patch’s extent at random in the range [5, 35] and set the overlaid
patch’s opacity to 75%. We combined real-world low-�eld (0.36T) pathological brain volumes with the simulated data for the validation and testing sets. For Gibbs ringing,
the artifact simulation process employed only low-�eld data instead of a publicly available dataset. We manually chose brain slices not containing the artifact based on
visual inspection. The simulation process involved removing a contiguous block of k-space lines along the input image’s phase-encode direction. We randomized the
number of lines to delete and the block’s starting location at random in the range [32, 64] and [0, 160]. Figure 1 shows representative slices of simulated and low-�eld data
for each simulated artifact. The dataset combined the simulated data and natively corrupted data. Data-preprocessing of both artifacts resized each slice to size 256 x 256
and normalized pixel intensities to lie in the range [0, 1]. We trained a binary classi�cation model for each artifact identi�cation task. The low-�eld, neuro-radiologist
labeled images were obtained from a 0.36T scanner at University College Hospital, Ibadan, Nigeria. Figure 2 presents the dataset-splits utilized in this work. Figure 3 shows
the 2D convolutional network architecture designed using TensorFlow-Keras [9] and provides training details. The entire source code is open-source and available on
Github [10].

Results
Training the wrap-around artifact identi�cation model for 10 epochs required approximately 12 minutes to achieve training/validation accuracies of 94% and 88%.
Precision and recall metrics evaluated on the validation and test sets were 91.7%/82.6% and 89.7%/86.7% respectively. Figure 4A shows the corresponding confusion
matrices. We used the validation results to tweak the simulation parameters and optimize artifact �delity. Filter visualization (Figure 4B) of a true-positive (TP), true-
negative (TN), false-positive (FP), and false-negative (FN) indicates that the model is learning to identify the overlap of volumes that occurs on wrap-around artifacted
images. For training the Gibbs artifact identi�cation model, we replaced the publicly available IXI dataset with low-�eld data. The reason was inherent contrast di�erences
observed in prior experiments comparing data acquired from low-�eld and high-�eld scanners. Training the model for 100 epochs required approximately 4.41 minutes.
The models achieved training/validation accuracies of 89.5% and 94%. The precision and recall metrics computed on the validation and test sets were 100%/90.9% and
86.6%/79.2%. Figure 4B shows the relevant confusion matrices.

Discussion and conclusion
Low-�eld MRI scanners are more accessible in resource-limited regions [5,11], where personnel may lack the required knowledge to accurately o identify and correct
artifacts. Images acquired from low-�eld systems are inherently prone to certain artifacts [11]. We have demonstrated the application of deep-learning-based methods to
identify wrap-around and Gibbs ringing artifacts in low-�eld images. We utilized a simple 2D CNN architecture to learn the artifacts from simulated and real-world images
at 3T and 0.36T �eld strengths. The preliminary results indicate that the networks can identify the artifacts with 89.5% accuracy and above across both identi�cation tasks.
For model explainability purposes, we visualized �lter activations for brain slices from the low-�eld dataset. Figures 4 and 5 show the most representative �lters. For wrap-
around artifact identi�cation (Figure 4), the background volumes in both the TP and FP similarly excite the �lters. In the case of the TP, the background volume
corresponds to the overlaid slice. The TN example doesn’t show any background activation. In the FN case, the overlaid wrap activates di�erently from the TP, which
might have led to incorrect classi�cation. For Gibbs ringing artifact identi�cation (Figure 5), visualizing �lter activations was inconclusive since the model acted on
frequency-domain input. As future work, we will test ArtifactID in a deployment scenario for prospective use. We will also increase the artifact dossier to include low SNR
images, motion artifacts, etc. We will provide recommendations to mitigate the identi�ed artifact if image re-acquisition is an option. In conclusion, this tool will help the
MR technician identify possible artifacts in the data that may interfere with diagnosis on-site at the scan time. We believe this is a valuable feature that would help
mitigate artifacts.
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Figures

Figure 1. Artifacts simulated in this work and identi�ed in the low-�eld dataset. a) Representative input brain slice (b-e) Gibbs ringing and wrap-around artifacts simulated
in this work b) Gibbs ringing artifact c) X-axis wrap-around artifact d) Y-axis wrap-around artifact e) Z-axis wrap-around artifact (f-i) Wrap-around artifacts identi�ed in the
low-�eld dataset (j-m) Gibbs ringing artifact identi�ed in the low-�eld dataset.

Figure 2. Dataset splits employed in this work. (a-b) De�nition of datasets D1 and D2. The publicly available IXI dataset (assumed to be artifact-free) was utilized to obtain
the artifact-simulated dataset via forward modelling. These two were combined to obtain dataset D1. In the case of the low-�eld dataset, artifact-free and artifact-
corrupted slices were manually chosen to constitute the dataset D2. (c-d) Training, validation and test set splits derived from datasets D1 and D2.

Figure 3. 2D CNN network architecture employed in this work. The 2D convolutional network used in this work constituted three 2D convolution layers (shown in blue) to
extract image features and three fully-connected layers (shown in orange) to perform the classi�cation task. Two 2D maxpooling layers were also included, as shown in
green. The ‘Flatten’ layer was used to reshape 2D convolutional outputs into a fully-connected layer-compatible 1D vector. Finally, for identifying the artifact, the output
was obtained from a ReLU-activated fully-connected layer with two nodes.

Figure 4. Performance evaluation and model explanation via �lter visualization for wrap-around artifact identi�cation. (a) Confusion matrix obtained from the validation
and test sets; in the case of simulated data, forward modeling parameters were tweaked based on the validation set results to improve performance. (b) Visualization of
representative �lters for a true-positive (TP), true-negative (TN), false-positive (FP) and a false-negative (FN) input for explainability.
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Figure 5. Performance evaluation and model explanation via �lter visualization for Gibbs ringing artifact identi�cation. (a) Confusion matrix obtained from the validation
and test sets (b) Visualization of representative �lters for a true-positive (TP), true-negative (TN) and a false-negative (FN) input for explainability. There were zero FP
classi�cation errors across the validation and test sets in this artifact identi�cation task.
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